Density Functional Study on the Mechanism of Collision Reaction among Protons， \mathbf{N}_{2} and Water Vapor

SUN，Hao（孙吴）PAN，Xiu－Mei（潘秀梅）ZHAO，Min（赵岷）
LIU，Peng－Jun（刘朋军）SU，Zhong－Min（苏忠民）WANG，Rong－Shun＊（王荣顺）
Institute of Functional Material Chemistry，Faculty of Chemistry，Northeast Normal University，
Changchun，Jilin 130024，China

Abstract

The mechanism of collision reaction among protons， N_{2} and water vapor was theoretically studied using Den－ sity Functional Theory．The geometries of reactants，transition states，intermediates and products were optimized at the B3LYP／6－311 $+\mathrm{G}^{* *}$ level by the BERNY gradient analysis method．Transition states and intermediates have been identified by vibrational frequency analysis．The relationship among reactants，intermediates，transition states and products was affirmed by IRC calculation．The variations of energy and geometry along the IRC－determined reaction paths were described．The possible reaction pathways were represented and the optimal one was decided from the viewpoint of energy．

Keywords density functional theory，reaction mechanism，transition state，proton， N_{2} ，water vapor

Introduction

Nitrogen gas，the main component of atmosphere，is always the hotspot in scientific studies，such as nitrogen fixation，to find feasible ways to dissociate its tri－bond and so on．In recent years，interstellar nitrides have at－ tracted extensive attention in experimental and theoreti－ cal areas．${ }^{1,2}$ In addition，there exist a great deal of water vapor and protons as well，the major components of cosmic rays，and therefore their reactions play a signifi－ cant role in chemistry and biochemistry．${ }^{3}$ There is also some indication that the reaction of those three by colli－ sion can generate hydrides and oxides of nitrogen and contribute to the destruction of ozone．${ }^{4-6}$ The products， such as NNOH^{+}ions，can react with CH_{4} and NO ，and cause the atmospheric pollution．${ }^{7}$ So a detailed study on the mechanism of this reaction is of great value and importance．

Computational methods

Full optimizations by means of Schlegel＇s algorithm ${ }^{8}$ at the B3LYP DFT level ${ }^{9}$ with the $6-311++\mathrm{G}^{* *}$ basis set were performed using the Gaussian 98W program． The nature of the stationary points was further checked， and zero point vibrational energies（ZPVE）were evalu－ ated by analytical computations of harmonic vibrational frequencies at the same theory level．Intrinsic reaction coordinate（IRC）calculations with the same method and level were also carried out to check the connection be－ tween all the critical structures located，using the Gon－
zalez and Schlegel method ${ }^{10}$ implemented in Gaussian 98W．

Results and discussion

Verification of intermediates and transition states

The results derived from our calculations confirm that there are five intermediates，eight transition sates and two products on the potential energy surface（PES）． The geometries and structural parameters of all station－ ary points are depicted in Figure 1.

In order to affirm the intermediates and transition states along the reaction pathways，we analyzed the vi－ brational frequencies of all the stationary points．All of them have twelve vibration fundamentals，but only TS1， TS2，TS3，TS4，TS5，TS6，TS7 and TS8 have merely one vibration fundamental which has an imaginary fre－ quency，and consequently are proved to be really transi－ tion states．Their imaginary frequencies are 1854.4312 i cm^{-1}（TS1）， $816.6063 \mathrm{i} \mathrm{cm}^{-1}$（TS2）， $1601.1969 \mathrm{i} \mathrm{cm}^{-1}$ （TS3）， $1292.9153 \mathrm{i} \mathrm{cm}^{-1}$（TS4）， $718.7362 \mathrm{i} \mathrm{cm}^{-1}$（TS5）， $392.6493 \mathrm{i} \mathrm{cm}^{-1}$（TS6）， $98.4653 \mathrm{i} \mathrm{cm}^{-1}$（TS7）， 356.3885 i cm^{-1}（TS8），respectively．The cartesian displacement vectors associated with the imaginary vibration fre－ quencies of the transition states are listed in Table 1. While the vibrational frequencies of IM1，IM2，IM3， IM4 and IM5 are all real and positive，which implies that they are all minima on the PES．The connections of reactants，intermediates，transition states and products

[^0]
[MI

TS2

IM4

TSI

D. 3

TS5

TST

Pi

IM2

TS. 7

TS6

IMS

P2

Figure 1 Geometries of all the species at the pathways (unit: bond length in nm , bond angle in degree).
are further affirmed by IRC calculation, indicating that they are located on the correct pathways.

Analysis of reaction mechanism

It was reported that the rate constant for the reaction $\mathrm{N}_{2} \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{N}_{2}$ is $(2.5 \pm 0.7) \times 10^{-9} \mathrm{~cm}^{3} \cdot \mathrm{sec}^{-1}$ at $300 \mathrm{~K},{ }^{11}$ and our study has also shown that the system of the above products is much more stable. So we begin the reaction of N_{2}, water vapor and a proton with $\mathrm{H}_{3} \mathrm{O}^{+}$ and N_{2} (IM1). Heat ($726.26 \mathrm{~kJ} / \mathrm{mol}$) released in this step is sufficient for the next steps. The energies of all species are listed in Table 2 and potential energy surface is depicted in Figure 2.

According to our computational results, the title
reaction is a dual-channel process. The reaction can be represented as the following steps:
(1) $\mathrm{N}_{2}+\mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{3}+\mathrm{NO}^{+}$
(2) $\mathrm{N}_{2}+\mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NNOH}^{+}+\mathrm{H}_{2}$

The products NH_{3} and NO^{+}from channel (1) can be generated via the route $\mathrm{R} \rightarrow \mathrm{IM} 1 \rightarrow \mathrm{TS} 1 \rightarrow \mathrm{IM} 2 \rightarrow$ $\mathrm{TS} 2 \rightarrow \mathrm{IM} 3 \rightarrow \mathrm{TS} 3 \rightarrow \mathrm{P} 1$. Hydrogen transference $(\mathrm{TS} 1 \rightarrow$ IM2) and single bond rotation (IM2 $\rightarrow \mathrm{TS} 2 \rightarrow \mathrm{IM} 3$) go through successively, and whereafter another hydrogen transference and concomitant chemical bond break $(\mathrm{IM} 3 \rightarrow \mathrm{TS} 3 \rightarrow \mathrm{P} 1)$ result in the product $1\left(\mathrm{NH}_{3}\right.$ and $\left.\mathrm{NO}^{+}\right)$. The barrier height for such process is $438.29 \mathrm{~kJ} / \mathrm{mol}$ and

Table 1 Vibration models of imaginary frequencies of all transition states

Transition states	TS1			TS2			TS3			TS4		
Imaginary frequencies $/ \mathrm{cm}^{-1}$	1854.4312i			816.6063i			1601.1969i			1292.9153 i		
Coordinates	X	Y	Z	X	Y	Z	X	Y	Z	X	Y	Z
O (1)	0.00	0.03	0.00	-0.04	0.08	-0.04	-0.01	0.03	0.00	-0.01	0.01	0.00
$\mathrm{N}(2)$	0.03	-0.02	0.00	0.01	-0.01	-0.04	-0.02	-0.03	0.00	-0.04	0.13	0.00
N(3)	0.04	0.00	0.00	-0.01	-0.00	0.07	-0.04	0.01	0.00	0.06	-0.05	0.00
H(4)	0.00	-0.12	-0.02	0.00	0.01	-0.03	-0.01	-0.11	-0.02	-0.03	-0.66	0.23
H(5)	-0.97	-0.14	-0.01	0.07	-0.02	-0.12	-0.01	-0.11	0.02	-0.03	-0.66	-0.23
H(6)	0.00	0.13	-0.06	0.47	-0.82	0.27	0.99	0.00	0.00	0.00	0.02	0.00
Transition states	TS5			TS6			TS7			TS8		
Imaginary frequencies $/ \mathrm{cm}^{-1}$	718.7362i			392.6493i			98.4653i			356.3885i		
Coordinates	X	Y	Z	X	Y	Z	X	Y	Z	X	Y	Z
O (1)	0.31	-0.04	0.00	0.24	-0.02	0.00	-0.09	0.11	0.00	0.10	0.02	0.00
$\mathrm{N}(2)$	-0.16	0.07	0.00	-0.12	0.01	0.00	0.07	0.03	0.00	-0.10	0.11	0.00
N(3)	-0.11	-0.04	0.00	-0.06	-0.03	0.00	0.02	-0.07	0.00	-0.03	-0.03	0.00
H(4)	0.05	0.01	0.00	-0.05	0.02	0.00	0.20	0.09	0.00	0.06	-0.77	0.00
H(5)	-0.63	0.14	0.09	-0.61	0.30	-0.05	-0.05	-0.68	0.00	0.20	-0.45	0.00
H(6)	-0.63	0.14	-0.09	-0.61	0.30	0.05	-0.05	-0.68	0.00	-0.10	-0.34	0.00

Table 2 Energies of all stationary points on the potential energy surface of reaction

System	$E^{a} /$ a.u.	$Z-P C^{b} /$ a.u.	$E_{0}{ }^{c} /$ a.u.	$E_{R}{ }^{d} /$ a.u.	$E_{R}{ }^{d} /\left(\mathrm{kJ} \cdot \mathrm{mol}^{-1}\right)$
R	-186.01815	0.02685	-185.99130	0.00000	0
IM1	-186.30907	0.04220	-186.26687	-0.27557	-726.2762
TS1	-186.14033	0.03976	-186.10057	-0.10927	-287.9857
IM2	-186.22256	0.04706	-186.17550	-0.18420	-485.4667
TS2	-186.18602	0.04445	-186.14157	-0.15027	-396.0429
IM3	-186.20328	0.04632	-186.15696	-0.16566	-436.6039
TS3	-186.12125	0.04007	-186.08118	-0.08988	-236.8825
TS4	-186.07018	0.03434	-186.03584	-0.04454	-117.3871
TS5	-186.08851	0.03233	-186.05618	-0.06488	-170.9940
TS6	-185.99006	0.03087	-185.95919	0.03211	84.6278
IM4	-185.99044	0.03139	-185.95905	0.03225	84.9962
TS7	-185.98902	0.03127	-185.95775	0.03355	88.4224
IM5	-185.99638	0.03181	-185.96457	0.02673	70.4480
TS8	-185.97169	0.02932	-185.94237	0.04893	128.9570
P1	-186.22538	0.04375	-186.18163	-0.19033	-501.6228
P2	-186.13043	0.03467	-186.09576	-0.10446	-275.3087

[^1]

Figure 2 Variation of energy along the pathways.
the heat of $501.62 \mathrm{~kJ} / \mathrm{mol}$ is set out to produce P1. The isomerization between IM2 and IM3 will be discussed in the following text.

P2 $\left(\mathrm{NNOH}^{+}+\mathrm{H}_{2}\right)$ can be obtained along three routes.

$$
\begin{align*}
& \mathrm{R} \rightarrow \mathrm{IM} 1 \rightarrow \mathrm{TS} 1 \rightarrow \mathrm{IM} 2 \rightarrow \mathrm{TS} 4 \rightarrow \mathrm{P} 2 \tag{2.1}\\
& \mathrm{R} \rightarrow \mathrm{IM} 1 \rightarrow \mathrm{TS} 5 \rightarrow \mathrm{P} 2 \\
& \mathrm{R} \rightarrow \mathrm{IM} 1 \rightarrow \mathrm{TS} 6 \rightarrow \mathrm{IM} 4 \rightarrow \mathrm{TS} 7 \rightarrow \mathrm{IM} 5 \rightarrow \mathrm{TS} 8 \rightarrow \mathrm{P} 2 \tag{2.3}
\end{align*}
$$

As for route 2.1, similar to channel (1), the process of $\mathrm{R} \rightarrow \mathrm{IM} 1 \rightarrow$ TS1 \rightarrow IM 2 comes through at the first and equal barrier height is overcome, and then two H atoms connected with $\mathrm{N}(2)$ are gradually dissociated and P 2 is generated via TS4 with a heat energy of $275.31 \mathrm{~kJ} / \mathrm{mol}$ released. P2 can also be achieved through route 2.2 , via IM1 and TS5. The energy of TS5 is $555.28 \mathrm{~kJ} / \mathrm{mol}$ higher than IM1. The third possible route to generate P2 is $\mathrm{R} \rightarrow \mathrm{IM} 1 \rightarrow \mathrm{TS} 6 \rightarrow \mathrm{IM} 4 \rightarrow \mathrm{TS} 7 \rightarrow \mathrm{IM} 5 \rightarrow \mathrm{TS} 8 \rightarrow \mathrm{P} 2$. TS6 has the energy of $641.75 \mathrm{~kJ} / \mathrm{mol}$ higher than IM1, and the activation energy is $203.46 \mathrm{~kJ} / \mathrm{mol}$ higher than route (1) and $2.1,86.47 \mathrm{~kJ} / \mathrm{mol}$ higher than route 2.2 .

Isomerization of intermediates

The step IM2 \rightarrow TS $2 \rightarrow$ IM3 involves a typical isomerisation of the two intermediates. The isomerization steps are important in determining the overall rate and yield, ${ }^{12,13}$ so we will discuss the isomerization process in detail. There is an energy barrier of $89.43 \mathrm{~kJ} / \mathrm{mol}$ for $\mathrm{N}-\mathrm{O}$ bond rotation step IM $2 \rightarrow$ TS2 whereas the barrier for IM3 \rightarrow TS2 is $40.56 \mathrm{~kJ} / \mathrm{mol}$. The variation of energy and important geometry parameters are shown in Figure 3. From the figure, we can see that only $\angle 6132$ changes much during $\mathrm{N}-\mathrm{O}$ bond rotation, and IM2 is much more stable than IM3 because of its faint spatial repulsion.

Energy changes on the pathways

To obtain the variation of energy along the path of the reaction, IRC calculations at the level of B3LYP/6-311 $+\mathrm{G}^{* *}$ were carried out. Calculations were started from all transition states by a step-length of $0.1 \mathrm{amu}^{(1 / 2)}$.Bohr, following the least energy path forward and backward scanning 100 points. Taking the reactant energy as zero, we calculated relative energy for each stationary point. Energy change along the reaction path is shown in Figure 3, which describes the mechanism of the collision reaction among protons, N_{2} and water vapor.

Conclusion

The title reaction is a multi-channel and exothermic process. The reaction can be represented as the steps below:
(1) $\mathrm{R} \rightarrow \mathrm{IM} 1 \rightarrow \mathrm{TS} 1 \rightarrow \mathrm{IM} 2 \rightarrow \mathrm{TS} 2 \rightarrow \mathrm{IM} 3 \rightarrow \mathrm{TS} 3 \rightarrow \mathrm{P} 1$
(2.1) $\mathrm{R} \rightarrow \mathrm{IM} 1 \rightarrow \mathrm{TS} 1 \rightarrow \mathrm{IM} 2 \rightarrow \mathrm{TS} 4 \rightarrow \mathrm{P} 2$
(2.2) $\mathrm{R} \rightarrow \mathrm{IM} 1 \rightarrow \mathrm{TS} 5 \rightarrow \mathrm{P} 2$
(2.3) $\mathrm{R} \rightarrow \mathrm{IM} 1 \rightarrow$ TS6 \rightarrow IM4 \rightarrow TS7 \rightarrow IM5 \rightarrow TS8 \rightarrow P2

Figure 3 Variation of energy during isomerization process $\mathrm{IM} 2 \rightarrow \mathrm{TS} 2 \rightarrow \mathrm{IM} 3$ and variation of important geometry parameters.

IM1 \rightarrow TS1 is the rate-determining step of route (1). The energy barrier height of this route is the lowest and P1 is more stable than P2, and therefore route (1) is the optimal route for this reaction. Considering its higher energy and insurmountable activation energies, P2 is not considered as the optimistic product, although P2 can be achieved via three routes and its branch ratio is larger than that for P1.

Our investigation in the present paper may be prospective to contribute to the study on interstellar molecular reactions.

References

1 Chi, Y.-J.; Yu, H.-T.; Fu, H.-G.; Xin, B. F.; Li, Z.-S.; Sun, J.-Z. Chin. J. Chem. 2003, 21, 30.

2 Liu, P.-J.; Pan, X.-M.; Zhao, M.; Sun, H.; Su, Z.-M.; Wang, R.-S. Acta Chim. Sinica 2002, 11, 1941 (in Chinese).

3 Kobayashi, K.; Kaneko, T.; Saito, T. Adv. Space. Res. 1999, 24, 461.
4 Li, L.-C.; Wang, X.; Tian, A.-M. Acta Chim. Sinica 2000,

58, 1099 (in Chinese).
5 Nguyen, M. T.; Hegarty, A. F. J. Chem. Soc., Perkin Trans. 2 1987, 2, 345.
6 Bagno, A.; Scorrano, G. J. Phys. Chem. 1996, 100, 1536.
7 Ferguson, E. E. Chem. Phys. Lett. 1989, 156, 319.
8 Schlegel, H. B. J. Comput. Chem. 1982, 3, 214.
9 (a) Becke, A. B. J. Chem. Phys. 1993, 98, 5648.
(b) Becke, A. B. Phys. Rev. A 1998, 38, 3098.
(c) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1998, 37, 785.

10 (a) Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154.
(b) Gonzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523.

11 Bolden, R. C.; Jeffs, S. P.; Twiddy, N. D. Chem. Phys. Lett. 1973, 23, 73.
12 Pan, X.-M.; Wang, R.-S.; Su, Z.-M.; Tyrrell, J. Chem. J. Chin. Univ. 2001, 22, 2077 (in Chinese).
13 Pan, X.-M.; Su, Z.-M.; Wang, R.-S. J. Chem. Phys. 1995, 8, 314.

[^0]: ＊E－mail：wangrs＠nenu．edu．cn；Fax：86－431－5684009
 Received October 23，2003，revised and accepted February 8， 2004.
 Project supported by Ministry of Education（the training project of elitist）Foundation（No．［2001］3）and the Young Teacher Fund of Northeast Nor－ mal University（No．111382）．

[^1]: ${ }^{a}$ Uncorrected energies; ${ }^{b}$ zero-point correction; ${ }^{c}$ sum of electronic and zero-point energies; ${ }^{d}$ relative energies to reactants.

